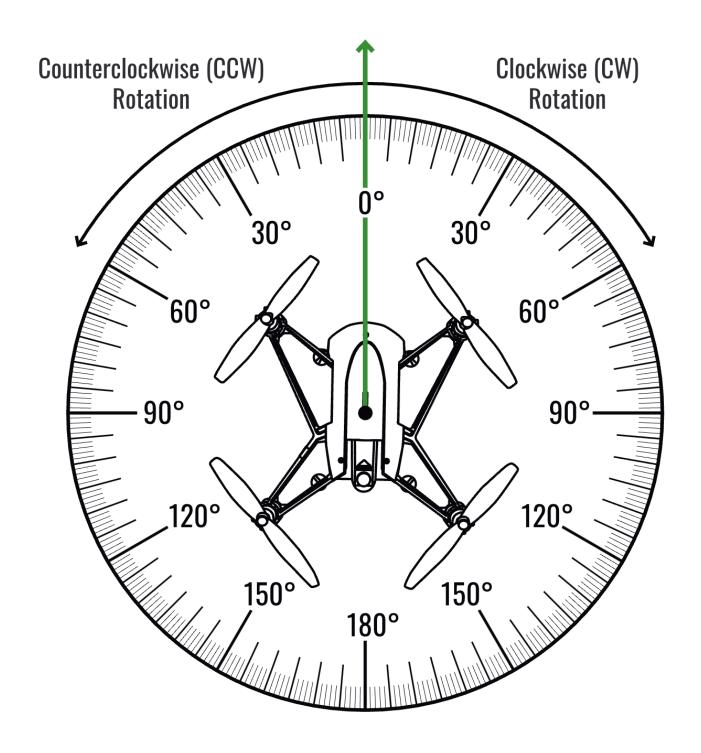
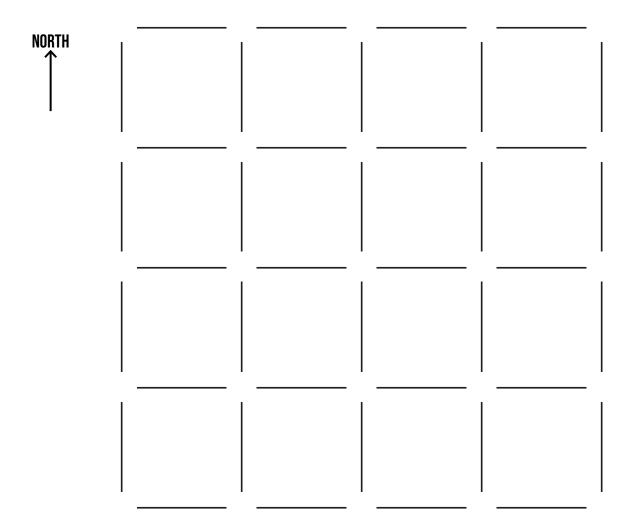


CONSTRUCTION STUDENT WORKBOOK


NAME: _____

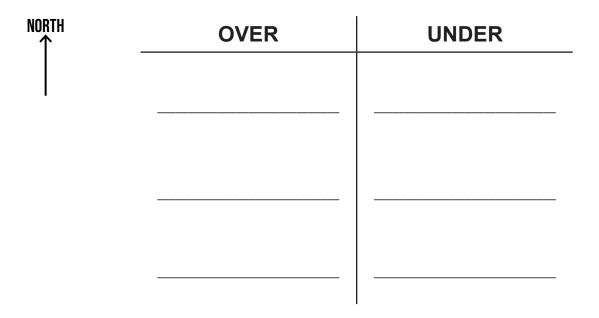
PILOT FLIGHT LOG


DATE	DRONE MODEL	LOCATION	FLIGHT TIME	NOTES

ANGLES REFERENCE

LESSON 1: AERIAL SURVEYING

1. Write the number of each manhole identified through Hopper's camera on the scaled diagram below. Each square below represents 5 square miles. (1 foot = 1 mile)



2. Draw an irregular polygon in your diagram above connecting all the manholes in numerical order. The engineers designing the flooding infrastructure need the area of land formed by this irregular polygon to determine how many materials to order.

Deconstruct the irregular polygon into more familiar shapes such as rectangles, triangles, or trapezoids. Then, find the area of the irregular polygon.

LESSON 2: BRIDGE INSPECTION (1)

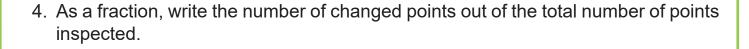
1. Write the number or color of each viewpoint of the bridge you inspected **before** the earthquake.

2. Write the number or color of each viewpoint of the bridge you inspected *after* the earthquake.

NORTH ↑	OVER	UNDER		
ı				

LESSON 2: BRIDGE INSPECTION (2)

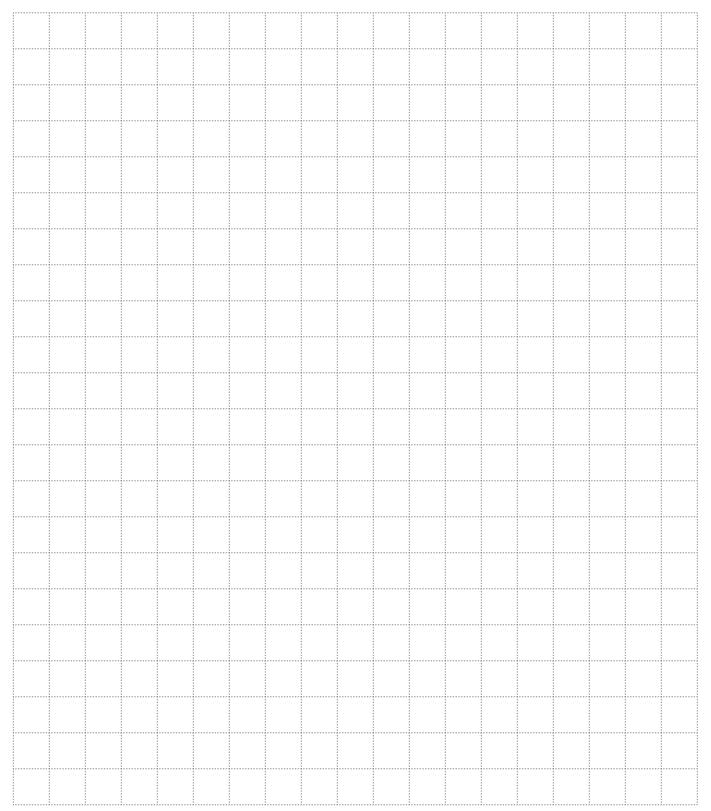
1. Fill in the chart below with any changes you discovered while comparing the inspection before the earthquake to the inspection after the earthquake.


Bridge Viewpoint (over/under)	Before Earthquake	After Earthquake

2.	At how many	total points	(landing	pads)	did vo	ou stop	Hopper t	o inspect?
<u>~</u> .	/ tt iiow iiiaiiy	total politic	(lananig	paac	ara y	oa otop	TIOPPOL (o mopour.



3.	How many total	points	(landing	pads)	changed	during	the	inspection	after	the
	earthquake?									



LESSON 3: 3D PRINTER DRONE

Use this page for any drawings, notes, or calculations during the 3D Printer Drone activity.

ENGINEERING DESIGN PROCESS

MODIFICATION

Refine & enhance your thinking. Scrap ideas, prototypes, & research that is not helpful. Start process again.

CHALLENGE

Understand the need or challenge & define what needs to be solved.

TEST/ANALYZE

Check prototype's performance with real users and go for broke. Identify all concerns.

RESEARCH

Gather information from all angles. Explore existing solutions & learn all you can about the challenge.

Communicate your best idea with simulations & models (digital or physical) to show how it works.

IMAGINE

Capture all ideas quickly. Brainstorm, sketch, discuss, & get feedback before prototyping.

FOR THE WIN ROBOTICS

ENGINEERING DESIGN PROCESS NOTES
Challenge:
Research:
Imagine:
Prototype:
Test/Analyze:

Modification:

GLOSSARY

Function – a written block of code that can be used multiple times in the code

Inspection – an extensive examination of a structure to ensure safety, quality, and regulation compliance

Irregular Polygon – a 2-dimensional shape with straight sides, unequal side lengths, and unequal interior angle measurements

Loop – a command that directs the code it covers to repeat until certain conditions are met

Navigator – the person responsible for giving the RPIC (remote pilot in command) directions on where to fly

Remote Pilot in Command (RPIC) - the person flying the drone

Visual Observer (VO) – the person maintaining visual contact with the drone and in communication with the RPIC

MATH FORMULAS:

Area of a Rectangle Formula – area = length × width

Area of a Trapezoid Formula – area = $\frac{1}{2}$ × base × height

Area of a Triangle Formula – area = $\frac{base_1 + base_2}{2}$ × height

Distance Formula – distance = rate × time

10

