

PACKAGE DELIVERY STUDENT WORKBOOK

NAME: _____

2025 | VERSION 2

PILOT FLIGHT LOG

DATE	DRONE MODEL	LOCATION	FLIGHT TIME	NOTES

BUILD FLY CODE®

LESSON 1: FOR DELIVERY

Use this page for any drawings, notes, or calculations during the For Delivery activity.

LESSON 2: RURAL DELIVERY

- 1. How many degrees are there in a circle?
- 2. What regular shape do the smaller islands create?
- 3. Draw and label on the graphic below according to the following directions:
 - Connect the black dots to form a regular polygon. Use a straightedge (such as a ruler) as needed.
 - Draw lines from the center of the regular polygon (the red dot) to each corner (the black dots) and label the distance measurement. Use a straightedge (such as a ruler) as needed.
 - Label the degree measurement between two of the lines drawn from the center of the regular polygon.

LESSON 3: ORGAN DELIVERY

Use this page for any drawings, notes, or calculations during the Organ Delivery activity.

BUILD FLY CODE®

ENGINEERING DESIGN PROCESS NOTES

Challenge:

Research:

Imagine:

Prototype:

Test/Analyze:

Modification:

BUILD FLY CODE®

GLOSSARY

Beyond Visual Line of Sight (BVLOS) – the *inability* of the RPIC (remote pilot in command) to see their drone at all times during flight

Equidistant – having the same distance

Navigator – the person responsible for giving the RPIC (remote pilot in command) directions on where to fly

Radio Frequency – an electromagnetic wave with low energy that is often used in telecommunications

Remote Pilot in Command (RPIC) - the person flying the drone

Variable – a place with a name that stores information

Visual Line of Sight (VLOS) – the *ability* of the RPIC to see their drone at all times during flight

Visual Observer (VO) – the person maintaining visual contact with the drone and in communication with the RPIC

MATH FORMULAS:

Central Angle Formula – For any regular polygon with *n* sides, the measure of a central angle is equal to $360^{\circ} \div n$.

Distance Formula – distance = rate × time

(STOP)

