

SEARCH & RESCUE

STUDENT WORKBOOK

PILOT FLIGHT LOG

DATE	DRONE MODEL	LOCATION	FLIGHT TIME	NOTES

ANGLES REFERENCE

LESSON 1: PARALLEL TRACK SEARCH

Use this page for any drawings, notes, or calculations during the Parallel Track Search activity.

LESSON 2: EXPANDING SQUARE SEARCH

Use this page for any drawings, notes, or calculations during the Expanding Square Search activity.

LESSON 3: SECTOR SEARCH

- 1. In an equilateral triangle, each angle is equal to ______°.
- 2. The sum of supplementary angles is equal to ______°.
- 3. Write the measurement of each marked angle on the diagram below of the sector search pattern.

ENGINEERING DESIGN PROCESS

MODIFICATION

Refine & enhance your thinking. Scrap ideas, prototypes, & research that is not helpful. Start process again.

CHALLENGE

Understand the need or challenge & define what needs to be solved.

TEST/ANALYZE

Check prototype's performance with real users and go for broke. Identify all concerns.

RESEARCH

Gather information from all angles. Explore existing solutions & learn all you can about the challenge.

Communicate your best idea with simulations & models (digital or physical) to show how it works.

IMAGINE

Capture all ideas quickly. Brainstorm, sketch, discuss, & get feedback before prototyping.

FOR THE WIN ROBOTICS

ENGINEERING DESIGN PRUCESS NUTES	
Challenge:	
Research:	
Imagine:	
Prototype:	
Test/Analyze:	

Modification:

GLOSSARY

Equilateral Triangle – a triangle with equivalent sides and angles

Expanding Square Search Pattern – an aerial search pattern that starts where the suspected location of an individual is and expands in a square pattern from there, useful when the general location of a lost individual is known

Loop – a command that directs the code it covers to repeat until certain conditions are met

Search and Rescue (SAR) – the process of locating and assisting individuals who are lost or are in danger

Sector Search Pattern – an aerial search pattern that forms a series of equilateral triangles, useful when the search area is small and the location of a lost individual is accurately known

Supplementary Angles – angles whose sum is equal to 180°

Parallel Lines – lines that have the same distance apart at all times

Parallel Track Search Pattern – an aerial search pattern consisting of parallel lines, useful when searching a large area of land and when the location of an individual is uncertain

MATH FORMULAS:

Distance Formula – distance = rate × time

Supplementary Angles Formula – If angles a and b are supplementary angles, then $a^{\circ} = 180^{\circ} - b^{\circ}$.

